ysyx-workbench/npc/csrc/Flow/main.cpp

164 lines
4.5 KiB
C++

extern "C" {
#include <gdbstub.h>
}
#include "VFlow___024root.h"
#include "components.hpp"
#include <VFlow.h>
#include <config.hpp>
#include <cstdint>
#include <cstdlib>
#include <devices.hpp>
#include <memory>
#include <types.h>
#include <vector>
#include <vl_wrapper.hpp>
#include <vpi_user.h>
#include <vpi_wrapper.hpp>
using Registers = _RegistersVPI<uint32_t, 32>;
using VlModule = VlModuleInterfaceCommon<VFlow, Registers>;
// SDB::SDB<NPC::npc_interface> sdb_dut;
bool g_skip_memcheck = false;
VlModule *top;
Registers *regs;
vpiHandle pc = nullptr;
const size_t PMEM_START = 0x80000000;
const size_t PMEM_END = 0x87ffffff;
struct DbgState {
std::vector<Breakpoint> bp;
};
extern "C" {
/* === Memory Access === */
using MMap = MemoryMap<Memory<128 * 1024>, Devices::DeviceMap>;
void *pmem_get() {
static Devices::DeviceMap devices{
new Devices::Serial(0x10000000, 0x1000),
new Devices::RTC(0x10001000, 0x1000),
};
static auto pmem = new MemoryMap<Memory<128 * 1024>, Devices::DeviceMap>(
std::make_unique<Memory<128 * 1024>>(
config.memory_file, config.memory_file_binary, PMEM_START, PMEM_END),
std::make_unique<Devices::DeviceMap>(devices), config.mtrace_ranges);
return pmem;
}
int pmem_read(int raddr) {
void *pmem = pmem_get();
auto mem = static_cast<MMap *>(pmem);
// TODO: Do memory difftest at memory read and write to diagnose at a finer
// granularity
if (config.do_mtrace)
mem->trace(raddr, true, regs->get_pc());
if (g_skip_memcheck)
return mem->read(PMEM_START);
return mem->read(raddr);
}
void pmem_write(int waddr, int wdata, char wmask) {
void *pmem = pmem_get();
auto mem = static_cast<MMap *>(pmem);
if (config.do_mtrace)
mem->trace((std::size_t)waddr, false, regs->get_pc(), wdata);
return mem->write((std::size_t)waddr, wdata, wmask);
}
/* === For gdbstub === */
int npc_read_mem(void *args, size_t addr, size_t len, void *val) {
void *pmem = pmem_get();
auto mmap = static_cast<MMap *>(pmem);
mmap->copy_to(addr, (uint8_t *)val, len);
return 0;
}
int npc_write_mem(void *args, size_t addr, size_t len, void *val) {
void *pmem = pmem_get();
auto mmap = static_cast<MMap *>(pmem);
mmap->copy_from(addr, (uint8_t *)val, len);
return 0;
}
int npc_read_reg(void *args, int regno, size_t *value) {
if (regno == 32)
*value = regs->get_pc();
else
*value = (*regs)[regno];
return 0;
}
int npc_write_reg(void *args, int regno, size_t value) { return 1; }
void npc_cont(void *args, gdb_action_t *res) {
DbgState *dbg = (DbgState *)args;
*res = top->eval(dbg->bp);
}
void npc_stepi(void *args, gdb_action_t *res) {
DbgState *dbg = (DbgState *)args;
*res = top->eval(dbg->bp);
}
bool npc_set_bp(void *args, size_t addr, bp_type_t type) {
DbgState *dbg = (DbgState *)args;
for (const auto &bp : dbg->bp) {
if (bp.addr == addr && bp.type == type) {
return true;
}
}
dbg->bp.push_back({.addr = addr, .type = type});
return true;
}
bool npc_del_bp(void *args, size_t addr, bp_type_t type) {
DbgState *dbg = (DbgState *)args;
for (auto it = dbg->bp.begin(); it != dbg->bp.end(); it++) {
if (it->addr == addr && it->type == type) {
std::swap(*it, *dbg->bp.rbegin());
dbg->bp.pop_back();
return true;
}
}
return false;
}
static target_ops npc_gdbstub_ops = {.cont = npc_cont,
.stepi = npc_stepi,
.read_reg = npc_read_reg,
.write_reg = npc_write_reg,
.read_mem = npc_read_mem,
.write_mem = npc_write_mem,
.set_bp = npc_set_bp,
.del_bp = npc_del_bp,
.on_interrupt = NULL};
static gdbstub_t gdbstub_priv;
static DbgState dbg;
arch_info_t isa_arch_info = {
.target_desc = strdup(TARGET_RV32), .reg_num = 33, .reg_byte = 4};
int gdbstub_loop() {
if (!gdbstub_init(&gdbstub_priv, &npc_gdbstub_ops, (arch_info_t)isa_arch_info,
strdup("127.0.0.1:1234"))) {
return EINVAL;
}
bool success = gdbstub_run(&gdbstub_priv, &dbg);
gdbstub_close(&gdbstub_priv);
return !success;
}
} // extern "C"
int main(int argc, char **argv, char **env) {
config.cli_parse(argc, argv);
top = new VlModule;
regs = new Registers("TOP.Flow.reg_0.regFile_", "TOP.Flow.pc.out");
top->setup(config.wavefile, regs);
top->reset_eval(10);
return gdbstub_loop();
}